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INTRODUCTION

There has recently been an increased awareness of the fact that pollutants which
are normally invisible to the naked eye may pose health hazards. Thus, major efforts
have been mounted to control various forms of those hazardous pollutants.

For effective control, effective prediction is necessary. The forecasting of air
pollution concentrations presents a very difficult problem of predictibility since many
variables influence the concentration of pollutants that are measured at receptor sites.
Numerous examples of such variables can be given, such as source strength, source geo-
metry, meteorological influences, chemical reactions involving the pollutants, etc.

The case of automotive pollution emanating from a line source is even more
complex than the case of a point source such as a factory. It has been remarked in a
recent NASA publication [1] that air pollution models which deal with diffusion from
highways and airports are not as refined as those that d=al with general urban models.
The purpose of this document is to produce a more reasonable model dealing with
highways.

The method that will be followed in the derivation of applicable equations is
analytic rather than purely numerical. A sophisticated and satisfying treatment could be
made via numerical integration of the diffusion equation, but the computational time
involved in such a scheme would be quite high. Additionally, numerical integrations on
systems of this sort tend toward instability.

The analytical model which is derived here is a compromise between the simple
approximations such as occur in Reference 2 and numerical methods.

The following flow chart (Fig. 1) illustrates the structure of the overall model.

'METEOROLOGICAL | ROADSIDE
CONDITIONS POLLUTION
CONCENTRATION

DIFFUSION |
MODEL

\ 4
POLLUTION

CONCENTRATION
MAP :

Figure 1. General Flow Chart.



An expanded structure for the block labeled “diffusion model” is required, and we
consider inputs to such a model. The basic diffusion model which governs the flow of
pollutants is fundamental to the entire discussion. The mechanics of the nondiffusing
air is accounted for via meteorological inputs. The source term can be considered to be
composed of two components, namely road geometry and traffic density. The important
area of chemical reactions of the pollutants will not be considered at this time. The
following flow chart (Fig. 2) summarizes the details of the internal structure for the
blocks labeled ““‘meteorological conditions” and “roadside pollution concentration.”

STABILITY WIND MIXING EMISSIONS ROAD TRAFFIC
CLASS SPEED LAYER PER CAR GEOMETRY. TIME
- DEPTH ] DOEPENDENCY
y > Y Y _ 1 ¥

4 1

METEOROLOGICAL ROADSIDE
CONDITIONS POLLUTION

— CONCENTRATION |,

4

| > TO DIFFUSION &
MODEL

Figure 2. Boundary conditions.

The above outline prescribes an approximate diffusion model which is coupled to
both the prevailing meteorological conditions and the (time variable) traffic density. The
results of the study provide a rapid method of estimating 'the concentrations ‘of pollutants
from a line source. Based upon the calculations given here, a full scale simulation
involving direct numerical integration of the applicable partial differential equations could
be undertaken.

In the development, a general separation of the diffusion equation will be accom-
plished via a product assumption. This requires several subsidiary physical hypotheses,
such as thermodynamic independence of the diffusion tensor and averaging of the winds
in space and time. The separates chosen are of such form that boundary condition
matching is facilitated. The specified separation is followed by boundary condition
matching on meteorological parameters and roadside pollution concentration. Finally,
the varying road geometry is taken into account by either.numerical integration or
segmentation or an approximate analytic method. The theory is applied to yield parametric
results and the numerical behavior of the equations is demonstrated.
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THE DIFFUSION EQUATION

The standard equation for a diffusing gas [2] is
ex ~
7tV Vx= V&RV ay -

where

x - is the concentration of the diffusing gas, a function of both time and space variables,
v is the vectorial win& velocity, which will be taken as an average value,

ﬁ is the diffusion tensor,

t is the time, and

Vv is the spacial gradient operator.

It is possible, via a rotation to diagonalize ﬁ so that

~L

AN AN AA
=kx11+ky”+kzkk . )

A A A ~
where i, j, and Kk represent cartesian unit vectors. The components of K (kx , ky s
and k,) represent the so-called eddy diffusivities, and are functions of the down-wind

distance. The physical basis of a variable diffusivity is that the pollution cloud spreads
as it leaves the road and interacts with eddies which are of the scale of the cloud. Thus,
taking k,, k, , and k, as constants is not physically satisfactory. By Reference 2, we

take y

w‘
H

0 (by superposition),

X
k, = kyx) , and o ' 3)
k, = k,(x)



-
Assuming that the vector velocity, V, lics along the x axis yields
= —A
V = ui \ : ' ‘ @

~> —
where u = |V|. (The case where V does not lie along the x axis will be considered
at a later time.)

Inserting (2), (3), and (4) into (1) yields

2 a2

ox ax X 0
a tU3x = ky(x)v + k,(x) 3;2 . : (5)

ot

This equation is at least partially separable. Assume that
“x = T Y(y) Wix,2) ; ' (6)

so that (5) becomes

TLEW " kz(x) 32w -
— —— — = x — —— N
T w ox y Y w022 (

where the prime (') denotes differentiation with respect to the argument. Isolation of
the only component dependent upon T yields

vy k() 2w g aw -
-—— , (8)

r 2 ky,(x) +
T Y’y w8z w 9x
vwhere: o  is a separation constant of unknown properties. Thus
—a’t .
T = A*e . )




e

where A* is an integration constant. Isolating the Y component of (8) yields

" k (X) 2 1
LUpE— [—a"— é af+1élv]=—ﬁz , (10)
Y ky(x) w oz w 0Xx

where - % 'is a second separation constant. Then

Y = B* cos(By +¢>y) an

and B*, ¢y are integration constants.

The residue of (10) may now be written as

o%w oW
= = 2 2
k() S - B o= = [a -p ky(x)] W 12)
It would be physically reasonable to require that U = Tu(z) and proceed with the inte-

gration of (12) on that basis. A difficulty arises in that no method of integration has
been found for this equation with variable k, and ky unless U is assumed to be con-

stant. This is, mathematically, why most authors always use average values of u. To
obtain an initial separation it was necessary to assume that U was averaged in time and
along y. It is now necessary to assume that T is averaged in z as well. In Reference
3 it is stated that one almost never has enough data to establish the dependency of U
on z in any case. Thus, we assume that

W(x,z) = X(x) Z(z) , (13)

so that (12) becomes

Z”..l 2 —_X_' 2 = _ A2 |

The total differential equation for Z is, then,



7"+ ytlo= 0 (15)

The solution of equation (15) could be written exactly as (11) was written as a
solution for (10). But it is convenient to choose a special form with an eye toward
matching boundary conditions. Thus we write,

o0
Z = C¥{cosy(z-H) + cosy(z+H) + Z [cos ¥(z - H - 2nl)
n=1
+cosy(z-H+ 2nl) + cosy(z+H-2nl) + cosy(z+H + 2nl)]} .
(16)

(The parameters H and 1, arbitrarily introduced into (16), have physical significance.
It will later be shown that 1 is the depth of a mixing layer, i.e., an upper lid which
is not penetrated by the pollution cloud. H is the effective height of emission of

the gases which arise due to the fact that such gases are normally warmer than the
ambient air.)

We also have, from (14),

1
X == [- Yk (x) + a? - ky(_x)] X an

which has the solution

2 X 2 X o?
X =Drexpl-=[ kmdx - = [ k®d+=x-x)|, (18

X0 X0

=I|~2

where X, is an arbitrary reference length. (Later Xo will be chosen to be the half-

width of the road.)

For algebraic convenience, we define



X
fx) = k) dx , and
X

(o]
(19)
X
h(x) = f ky (x) dx

X0

Using (19) in (18) and the resultant equation, along with (16), (13), (11), and (9) in (6)
gives

. ) X - X0 72 f(x) B2 h(x)
-2t - — - -
x = A* B*C* D* e u e v

e cos(fy + ¢y) cos y(z - H)

o0
+ cosy(z+ H) + Z [cos ¥z -H-2nl) + cosy(z-H + 2nl)
n=1

+ cosy(z+H-2nl) + cosy(z+H+ 2nl)] } R 20)

which is the formal separated solution of (6).

BOUNDARY CONDITION MATCHING

Since the separated equation is degenerate in the (t,x) pair, it is obvious that
boundary conditions can be matched only on z, y, and (t,x). We begin with z. The
eigenvalues, vy, form a continuous spectrum so we can write

x = XTY[ e

~—00

w Y

cos y(z - H) + cosy(z +H) + Z [cos ¥(z - H -~ 2n}H)
1

n:

+ cosy(z-H+2nl) + cosy(z+H+2nl) + cosy(z+H - 2nl)] dy @1

From Reference 5, eq. 3.896 we have



o 22 » o - 2
f e drx cos @, (x +A)dx = —qﬂ e 4, COs Qs A (22)
—00 1

Jdentification of variables between (22) and (21) yields

o Y2(x) (z+Hz2nl)? §
[ €78 cosyztHtonhdy =/ ? e 4f(x) . @23)
oo .

Similarly, (21) can be written as

w _B*h(x) _, _yu
a v}
X = XTZf € u cos(By + ¢y) dy = % e 4h cos ¢y (24)

Thus, including all possible values of § and <4 shows that (20) may be written, with
A = A* B* C* D* cos ¢y, as
X—X y2u [ u
AU "a2<t—'a_o>—w —va(z—}'l)2 —'4T(Z+H)z
= e e e + e
X Tt .

U @rH+2D? - 24 H - 20
4f(z n +eﬁz -~ 2nl)

+ ¢

4 (z - H - 2nl)?

s Y e A

n=1
u
- aF (z - H + 2nl)?
+ e (25)
It is how convenient to modify out notation slightly to be in agreement with the

standard literature. The quantities u/f and u/h are not generally tabulated. Instead
Physically Oy and

we find, as in [3], direct tabulations of the quantities oy and o,.
o, are quantitiés such that ~97 percent of the mass of the pollutants are contained in

a cloud of radius 2.15¢. Mathematically,



==
1

+ —_— N and

it

y U
(26)
-4 2f
o, 3
are given. Inserting Oy and o, in (25) gives the more compact form
L, *Xo\ 1 y)2 1 (- Hy? 1 (z + H)?
— a —-— — — —— — — o ——— — e ————
x_2A1re u eZUY e2 0,2 +e2 0,°
oy 0,
(z - H - 2nl)? (z - H + 2n1)? (z + H + 2nl)?
o | TT %52 ST 52 ST a2
+ ) e 202 vo 20z +e 20
o Ld
n=1
(z + H - 2n1)?
e e
+e 02 @7

It is now possible to illustrate 2n important set of properties of the “Z” portion
of (27). We have

1 (z - H)? 1 (z + H)?
o7 1 T2 2 —5——2_
— = -—3 |(z-h)e %2 + z+H)e 7z
07. g,
(z - H - 2nl)? (z - H + 2n1)?
o __2—2—— T a2
+ E (z-H-2nDe Iz + z-H+2nhe 20,
n=1 ]
(z + H + 2nl)? (z + H - 2nl)?
20.2 - 20.2
Oz + z+H-2n)e %z (28)

+ (z+H+2nbe




Notice that

oz

o =0 . (29)

z=0Q

Similarly, an expansion of the series shows that

oZ

> =0 . 30

z=1

From [4], equations (29) and (30) ensure that the ground and a mixing layer of
arbitrary depth, 1, are impervious to pollution transfer.

Also, if we allow 1 to become large in (27) we find that Z can be written as

1 (z - H)? 1 (z + H)?
3T 2 _5-'2_
Z = XTY| ¢ 2 9 + e %z ,

which corresponds to the physically unrealistic case of a superadiabatic atmosphere of
infinite depth.

The next modification of (27) to meet the specific model we wish to consider
involves the fact that (27) represents a point source, not a distributed source such as a
road. The following figure is applicable.

x (WIND DIRECTION)

1

=~ (x.y) (RECEPTOR POINT)

'TE

- y*
YY|

—e Y S « .
yo 0 (x* =0, y*) Yo y (ROAD DIRECTION)

(SOURCE POINT)

Figure 3. Distributed Source Geometry.

10



(—yo, Yo are, respectively, the Eastern and Western terminus point of the road scgment

under consideration.)

We have, from (27),

1 y?
573
x = X1Ze - °Y

for a point source at (0,0). But for a point source at (0,y*) of strength Qdy* per unit
distance, we must have

Gy -y*)?
2 2
dx = QXTZe Y  dy*
or
- v*)2
Yo _(yzayz)
x = QXTZ { e Y o dy*
Setting
*
6 = Y- ,
\/2_0y
we have
d %k
o = =
2°y
And when
y* = ty, ,

11

R WO



we must have

o *VY)
@ = t—
\/2_0y
Thus,
yO -y
20y _en Yo *V
x = /2 oy QXTZ e dO= /T oy QXTZ/ erf
(Yo tY) Oy
2 oy
Vo=~V
+ erf an
V2 oy
or
o o () [(1e-w
2AmM 72 Q ! Oo +¥) Yo~ 2 o}
X = ———— erf |———— | + erf e
Oz \/7.7), \/2_oy
I (z+ H)? (z-H - 2nl)? (z - H + 2nl)? (z + H - 2nl)?
-5 2 ioglt I ey 2 - 2 - 2
+ e 2 0 + 2 e “0z + e 20, + e 20,
n=1
(z + H+ 2nl)?
_ —
toe 7z \ (32)

12



Equation (32) is not yet normalized and does not yet account for traffic density.
There would be a certain elegance involved in a car-by-car trace which gives rise to a
complicated coupling between y and t, but this is hardly necessary. We will, instead,
simply assume that the travel time of any car on the road is short compared to the time
over which the pollution cloud is observed. Equivalently, we shall assume that the
variation of traffic at the center point of the road represents the variation of traffic along
the entire road, and match our boundary condition in time at this point.

In order to match the traffic density boundary condition, we shall make use of the
the remaining separation parameter (o) and the “constant” A. Note that no violation of
equation (1) results if we assume that A is a function of «a. Furthermore, in order to
obtain a normalized function we evaluate x as the point (xo, 0,0, t)as

1 H?
8 Am™? Q -att Yo "2 62
X(x,0,0,t) = e eff —— Y e z
0,(Xg) . \/Toy(xo)
(H + 2nl)? (H - 2nl)?
o s
+ 3 e 207 +e 2 . (33)
n=1
For algebraic convenience, we label
1 H? (H + 2nl)? (H - 2nl)?
/2 y -5 Tz o VT T 52 T T 5.2z
8(m) 12Q orf o . 2 Oy + Z . 20, + e 2g,
0,(Xo) V2 oy(xg) n=1
34)
so that (33) becomes
-0t
X(x5,0,0,t) = @ A(a) e . (35)
Accounting for all possible values of « gives
13



N 2

—alt A
Xx0,000) = & [ A@e " da . (36)

where the lower limit is deliberately unspecified.

We wish now to assert that at (x,0,0,t), the pollution density at roadside is given
by

x(x5,0,0,t) = QN(t) (37)

where Q is the emission per car per unit distance and N(t) is the number of cars per
unit time. Thus given N(t) we wish to solve for A(w) such that

2

QN®W = @/ A@e" lda . (38)

where N(t) may be expanded into an arbitrary series which is subject only to well
behaved numerical behavior properties. (The possibility that N(t) could be represented
by a single, simple, analytic function is so remgte as to be negligible.)

Three cases will be considered. In the first case we shall deal directly with o?
and the range of integration will be (~o0,00). Secondly, if we assume.that- o« can be
written in place of o?, then A(a) becomes the inverse Laplacian of Q'N(t)/®. The
integration range, in that case, is (0,0). Finally, if we assume o« to be a purely imaginary
number, which implies that A(x) is the inverse Fourier transform of Q N(t)/®.

For the first possibility, assume that
4 p
A@ = ) ay@®) : 39
p=1
so that (38) yields

(=]

ANt = @ f
-0 p=1 p=1

M M
2p -o?t : 2p-D U/
Zapapea dae = & (2p )1' 7f_ap 40)
2P (PHA

14



(Reference 5, eq. 3.461). Since N(t) is an empirical function, assume that it may be
presented as

M ‘ bp
N(©) = pZ=1 s @1)
Then we must have
2 " b,
a, = 42)
Qp-D VT &
so that
M 2P b, 2P
A = ) (43)

=1 Qp-D T @

Finally, the expression for x, equation (32), can be written as

2 X—Xo
- <2(7r)3/2AQ>(Q>f°° %4 2Phpet? . T da

P/ p=1 Qp-DNYT

M
S (o
= = vz Z e o 4 2 (44)
' < o, ) =1 (t— _o)p
u
We next assume that « may have only positive values and choose
M
Ala) = Z] ap, cos p , 45)
p=

15



so that

= M -at . M ap t
X(XO,O,O,t) = QN = (I)f g ap cospae da = & E— m (46)
o p=l - p=1
Assuming that x is readily fit as
M by t
x = Q Z Tt , i - (47)
p=1
we identify v
Qb,
a-p = T ) (48)

so that

1
[\
7~
%)
-
-
[
Q
N
Qo
SN
wd
N
—
8
k<
o
e
|
=3
N
-
|
»®
|
>
(o]
N—
o
Q

( X - x0>

3, M bp t-

) (2 () Q>(§_>YZ 3 o\ | )
p=1 <

2
O'Z o s
- - +p
u

Finally, we choose a purely imaginary separation constant and define

M a 2 ,
A@ = Y P sin 4°‘P + :-: . (50)
p:l \/2 Pp p

16



Ihaen

X{X,0,0,t)

M 2 S

QN(t) = fI)f Z P gn[>2- + 2 elat
2rvIE, \4Bp 4

=& ) apsin (P, t?) . (51)

Thus, if we can write, conveniently,

M .
N(t) = Z by sin (Pp, %) , (52)
=1
we must have
Qb
- p
ap = 5 : | (53) |
. A
Finally, Yy

3 M - 2 A
2.(m’? Q\[Q . X "o)
<—5z_—> ($> YZ Z bp sin P, (t -— 54)

The choice of equation (44), (49), or (54) is arbitrary from the theoretical point
of view. Numerically, however, the behavior of the three equations differs markedly.
Whichever of these best fits the traffic pattern should be used.
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" Equation (54) may be fully written as

Yo ty Yoo ¥
erf + erf
Q 9.(xy) (ﬁ oy AVigy M . x-x, \?
Py E bp sin Pp t- T

x(x,y.z.t) =
a,(x) Y =
* erf 2 p=l
V2 0y(xg)
(z - H? (z + HY? (z - H - 2nl)? (z - H + 2nl)? (z + H + 2nl)? (z + H ~ 2nl)?
- ) N ko - ] - E] - 3 - F)
e 20, te 20, + Z . 20, ‘e 20, ‘e 20, +e 20, (5 5)

_ H? _ (H + 2ni)* _ (H - 2nl)?
. 20,(xy) . Z . 20,(xoP . e Jog(xo)

=
—

Equations (44), (49), and (54) represent three possible solutions out of an infinite
number of choices which could be made for A(a), and they are convenient from certain
points of view. An additional purely numerical scheme is also worth considering. These
equations all share the property that they are degenerate in the variables t and x. This
is a direct result of the assumption that k,(x) vanishes. Set, for convenience

X=X
o
= 0 ,

w(t,x) = t - —
7]

and consider a coordinate X1 > Xg, and a time t = t. Then
qt+ (1< A [w(t*, xg) = wity, xl)] :

where we can explicitly define

X1~ Xo
tF = t-———
a

This represents a retarded time wave. The practical result of this observation is that if
we define the traffic density as a dense function (perhaps even via interpolation), then
the representation of the traffic via calculation of polynomial coefficients becomes

unnecessary.
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ROAD GEOMETRY

It was earlier stated that we would temporarily assume that the road was per-
fectly straight and that the vectorial wind was orthogonal to the road. In practice, of
course, roads are rarely straight and this fact must be included in the theory which has
been presented.

Several methods of approach suggest themselves. We could, for example, curve
fit a polynomial between the x and y coordinates of the road, obtaining a relationship
such as '

y* = F(x*) A : (56)

and integrate an equation similar to (31), after replacing x by x - x* and y by

y - y*. Such a process is possible, but would most likely prove unsatisfactory due to
the complexities of curve fits within curve fits and the machine time required for com-
plicated numerical integrals.

A slightly modified approach would be to break the road into linear segments

and not assume that the wind is orthogonal to the road. That is, assume that (56) is a
linear relationship via

y* = x* tan ¢ ; 57)
where  is the angle between the y axis and the road (Fig. 4).
x (WIND DIRECTION)

A
{x,y) (RECEPTOR POINT)
R

ROAD

1
1
(x - x*) i
[}

Figure 4. Nonorthogonal Wind Geometry.

19



Thus, (55) would be written as

(y - x* tan )?

Yo tan ¥ M - x*
2g. 2(x-x* X-X X
x(x,y,z,t) = 9 0,(xg) ay(xo) %y (x-x*) Z bp sin Pp t- ——_——9
4 Yo tan ¢ p=1 u
(z - H)? 7 (z + H)?
1 20,%(x - x¥*) + e 20,7 (x - x*)
oy(x - X*) 0,(x - x*)
(z - H - 2nD)? (z - H + 2n})? (z + H + 2nl)?
oo = 7 - _——
. Z 20,2 (x - x*) ‘e 2022.(x - x*) r e 20,%(x - x*)
n=1
(z + H - 2nl)?

" 20,7(x - x%)

+ e dx*

which is a none too pleasant integral.*

A third possibility, an approximation that offers some hope of numerical applica-
tion is as follows. Consider a road of arbitrary geometry. Segment the road into a large
number of individual straight segments and apply, say, (55) to each of:the pieces (Fig. 5).
Subsequently, the segments are added linearly to obtain the total air pollution. Graph-
ically we have:

SEGMENTED APPROXIMATION

TRUE ROAD PATH

Figure 5. Nonlinear Source Geometry. -

* An analytical approximation to this integral is developed in Appendix B.
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To rewrite (55) in such a way as to account for such scgmentation, assume that
the road is broken into k segments, each of length 2L (Fig. 6). Label a generic scg-
ment by the subscript i, and assume that it is centered at the point Xx;, y;.

X
e e . - -=i {x,y}) RECEPTOR POINT
|
(x-xi) 2, i
N i
e :
]
[N} |
R
]
HE t
vy,
y-v;-vy*

Figure 6. Linearized Source Approximation.

If we assume an imaginary separation constant, then the new form is available directly
. from (55). Thus we have an accounting for all segments,

(y-yi-L) (y-y;+ 1)
« erl \/_ + erf \/2_ « )
Q; o0,(x,) 2 o,(x - x;) o (x - x:) X = Xi - X
X=E i 2o y ! y ! Z bpsian(t——_l D)
=1 2 o,(x-xp) orf Li-vj erf Lty =1
VZoyxg)) - VT aylxy)
_ (z - H)»? _ (z + H)? _(z+H+2nl)’ _(z+H—‘2nl)’ _(z-H<I'2nl)z _(z—H—an)2
. ZUZ’(x—xi) ‘e 20,2(% = %)) . E R Zazz(x~xi) ‘e 20,2 (x - ¥p) + e 207’(x-xi) ‘e Zaz’(x-xi)
=l _
[ AR RUERIDS RUERLS
R 2(7,7(\0) N :? R 20,1(\0l R Juli(xo)
n-l
(58)
k
Since the true road length, S, will vary from the segmented length, 22 L,
we ensure conservation of pollution by scaling =1
_ Qs
%G
2L
i=1
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Furthermore, Q; may be varied along the route to account lor high pollution
points such as interchanges.

ROADSIDE POLLUTION CONCENTRATION

Using equation (58) as a specific example, it is apparent that the Q;’s are not
yet specified. Other parameters, such as X, X{, 0, Ty etc. are available from other
design estimates or tabulated data, but the -Q;’s require further development.

To begin the discussion, the emission rates in mass per unit length of travel from
automobiles have_been published in Reference 6. (These emission rates vary according
to load.) Assume that under given conditions automobiles emit an average of Q;* grams

per meter per vehicle. The only other dimensional quantity in equation (58) is the
traffic dens1ty, N(t), which is measured in vehicles per second. Thus, equation (58) reads,

dimensionally,
[x] = [Q] IN]
or

Mass_ - veh
Length? [Ql Time

where: M is mass, L is length, and 7 is time. Assume a volume over which the
emissions are stabilized. This volume is of height H, length L and expands in a
direction perpendicular to the road at a rate u. The volume described is given by L;Hu;

where, as before, Lj is the length of the road which is considered.

Thus,
Q = Lio* _
LHi - Hu
so that
[Qi] = [Qi*] - Mass.-Time

[H] [u] Length® - Vehicles
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Obviously

Ix] = Mass - Time Vehicles _ Mass
Length® - Vehicles .. Time Length?®

INPUT VARIABLES

We shall now apply the theory which has been developed to sample data cases.
The program used in the generation of this data is documented in Appendix A.

Perhaps one of the most important sets of parameters giveﬁ in the preceding are
the diffusion coefficients gy and o,. These quantities are fairly complicated functions

of the distance from the source, x, and the meteorological category. From Reference
7, we have the following tables.

. | TABLE 1. DIFFUSION COEFFICIENT oy, M
lsistance From
Source, Meters Meteorological Categories
A B C D E F

10? 22 B 16 | 12: 8 6 4
10° 210 150 105 75 52 36
1 b“ ‘1 700 1300 900 600 420 360
10° 11000 8500 6300 4100 2800 2000

TABLE 2. DIFFUSION COEFFICIENT, o,, M

A B C D E F
102 14 11 7.6 48 | 3.6 2.2
103 500 120 70 32 24 14
10° - | - 420 140 1 90 46
10° - - -] 2100 440 170 92
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The meteorological categories can be characterized as follows [7]!.

w
IH

¥
il

S

6 =

F

extremely unstable conditions

moderately unstable conditions

slightly unstable conditions

neutral conditions (applicable to heavy overcast, night or day)
slightly stable conditions

moderately stable conditions.

The categories A-F relate to surface wind speed, insolation, and percent of overcast
as shown in the following table [7].

Surface Wiﬁ& Speed- o N Thin Overc-ast70r> N
Meters/Sec Daytime Insolation > %/s Cloudiness { < 3/s Cloudiness
T S‘tagw mMc;cl‘e;t; Slight - o
<2 A A-B B |
2 A-B B C E F
4 B B-C C D E
6 C C-D D D D
> 6 C J D D b D

Some comments about the stability classes and corresponding Oy, 0y values are

in order. There exists a “G” category of stability which will not be considered here.
This category requires a negative thermal radiation balance. The G category may thus
occur only at night. The F category is also primarily a night-time reading, though F
may extend beyond sunrise on the order of one hour. There is hesitancy on the part of
some authors to use F (and G) class stability since an averaging process outside of the
direct time period of applicability would yield false averages. References 8 and 9 treat
F (and G) as common cases.

1. For numerical convenience we shall relabel class A as 1 through class F as 6.
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Since the period of worst meteorofogical conditions with respect to pollution
propagation does not occur at the saume general time as does peak traffic loads, care
must be taken that realistic combinations are used. Even so, one of the following graphs
wiil deal exclusively with F class stability in order to illustrate conditions which could
exist under special circumstances.
parameters must also be used with care.

The numerical values of the o, ¢

y Uz
\

These are intended for fairly short range calculations?. Specifically, many of the values
of oy and ¢, given in Tables 1 and 2 are apparently the result of extrapolations rather

than measured data.

For this reason, we shall restrict the numerical use of the equations to a distance
of one kilometer for x - x,.

Reference 10 contains valuable data concerning the calculation of the o values.
In this source, the values of these parameters are shown as a functional equality involv-
ing the wind equation angle, the vertical virtual distance, vertical diffusion, and the dis-
tance over which rectilinear vertical expansion occurs downwind from an ideal point
source. This approach could be used if one were attempting to isolate the exact set of
meteorological parameters which correspond to worst case estimates. Even so, certain
assurnptions must be made with respect to the input variables to the equation unless
massive quantities of statistics on meteorological patterns are available. For this reason
it is convenient to use the values given in Tables 1 and 2 for values of x - Xg < 10°
meters.

There are other important parameters in the equations which have been developed
besides the Oy+ 0g values. The parameter H, the height of stabilization of the center
of the pollutant cloud, drastically affects the numerical results, H, or its equivalent, is
almost inevitably included in all but the most elementary diffusion models. Specifically,
rocket exhaust plumes during static firing have flow rates and heat contents which are
extremely large. This gives rise to very high stabilization heights. Furthermore, stack
gas emissions from power generation and industrial sources sometimes are designed to
yield a maximum value of H within economic and materials constraints. In the case of
automotive pollution, H is very much smaller than are the values for either rocket
plumes or industrial stacks. '

An equation suitable for estimating H for automotive exhaust is given in Refer-

ence 10. Assuming the radius of the exhaust pipe to be effectively zero we have, from
[1o1, '

2. Stephens, J. Brisco: Personal Communications.



where:
Q 1s the buoyancy parameter, (3 gn‘/uﬂ‘pcp}),

g (j 1s tilé gffective heat released,

é,. is thfe‘density of anbient air,

Cp 'is the ratio of specific heats of air at constant p-ré‘ssur\e, -
r the temperature,

¢ the entrainment coefficient,

. . g af
n is defined at = — , and
: T o9z

g is the acceleration of gravity.

The quantity 99 s defined by the subsidiary relationship
! az

]
W Lo LB
0z cp

i

;.. Apparently fewer estimates have been given for the flow rate and exhaust temper-
_rature of automobiles than have been given for certain other characteristics of these
machines. Two sources which list the flow rate and temperatures of automotive engines
are References 10 and 11. Reference 10 gives the following table, which is the more
complete of the two sources.

TABLE 3. ENGINE EXHAUST DATA

Driving Mode
e ' "~ Idle - | Acceleration | Cruise Deceleration
Exhaust C.F.M. - 525 " 40-200 25-60 - 5-25
" Flow m>/min | 0.14-5.66 | " 1.13-5.66 [0.71-1.70 | 0.14-0.71
Exhaust ) °F 150-300 450-700 | 400-600 200-400
Gas Temp ¥ °C 65.6-149 232-371 204-316 93-204

* At the entrance to the muffler.
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Additionally, a temperature profile for the atmospheric layer in the 1.2 to 7.1
meter region is given in Reference 4.

A very careful calculation would involve estimates of the percentage of time in
each driving mode. But the calculations with limit cases indicate a rather high insensitivity
to various inputs since H involves a fourth root. Specifically, although the temperatures
listed above are almost surely much too high for the actual temperature of the gas emer-
ging at the tailpipe, there seems no need for further precision. The estimates range from
approximately one-half meter to about three and one-half meters, with two meters being
a good number. This will be used in subsequent calculations. (The numerical range
assumed for ¢ for an H value of two meters is 0.11 to 0.16).

In order to illustrate the primitive use of the diffusion relationship, a simple case
will be presented, using a linear road which is orthogonal to the direction of the wind.
Furthermore, a constant flow of 1000 vehicles per hour will be used in order that speci-
fic traffic flow patterns do not muddle the overall picture. The length of the road will
be specified at 2 kilometers. The mixing layer depth, 1, will be treated parametrically,
and the road width given at 10 meters.

Initial parameter variations will involve the distance from the road and the mete-
orological categories. To obtain results of general application, x/Q will be reported
rather than x and Q perse. The y and z coordinates used below are arbitrarily
set as (0,2) respectively.

NUMERICAL RESULTS

The most obvious data which can be generated from the program concerns the
reduction of pollution as one moves away from the road. This is plotted in Figure 7.
This data was gencrated under the assumption of class 6 stability — which is probably
overly severe, but acts as a bounding case. Notice that for constant traffic density, the
parameter U enters hyperbolically, so that only one value of T needs to be actually
programmed.

For a given wind speed, it is also of interest to illustrate the variation of x/Q
with distance for varying stability classes. This is shown in Figure 8. This Figure also
assumes a mixing layer depth of 1000 meters. The figure shows the importance of
stability class variation with respect to pollution concentration. For a very unstable
atmosphere (stability class 1 or A), pollutants are quickly dispersed due to upward
ventilation. As the atmosphere becomes progressively more stable, less and less vertical
mixing occurs, resulting in higher concentratlons near the ground.
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Figure 7. Variation of x/Q versus distance from line source. with wind
speed as a parameter (stability class 6(F)-mixing layer depth 1000m).

Rather than dealing directly with varying x/Q, it is also of interest to fix the
value of x/Q via variation of wind speed. That is, for a given distance there is some
wind speed which corresponds to a vaiue of x/Q = ™. Since distance and wind speed,
at which x/Q = ¢, depends upon the stability class and the mixing layer depth, these
additional variables must also be reckoned with. In Figure 9, the mixing layer depth is
1000 meters and the stability categories are shown parametrically. Thus, for a given
stability class and a mixing layer depth of 1000 meters, we can find the distance at which
x/Q is equal to e¢? for a given wind speed. '

In Figure 10 we have the same plot as Figure 9, excepting the fact that the
mixing layer depth is only 100 meters. It is interesting to note that even this drastic
decreases modifies the results only for stability class 1 and then only for distdnces be-
yond several hundred meters. The effect would eventually modify all stability classes
at turther distances, of course.
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Figure 8. Variation of x/Qversus distance from line source, with
stability class as a parameter (wind speed 1 m/sec —
mixing layer depth 1000 meters).

Figure 11 indicates the result of a further reduction in mixing layer depth. The
case illustrated has a mixing layer depth of only 10 meters -- a low but physically realistic
value. The result is obvious for all stability classes - namely, the pollutants are trapped
near the ground and concentration becomes almost independent of distance.

The next three graphs. Figures 12, 13, and 14 are cross plots of the data shown

in the preceeding three graphs. In each case, the wind speed necessary to achieve the
value of x/Q* = e at the parametric distances is plotted against mixing layer depth.
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Figure 14. Wind speed necessary to achieve x/Q = e? at the parametric
distance versus stability class (mixing layer depth 10 meters).

The three figures differ in having mixing depths of 1000, 100, and 10 meters, respectively.
The representation of the data in this form is particularly useful if a statistical study of
probable weather pattern is to be used to predict potential pollution levels.

In the above mentioned charts, the mixing layer depths were never taken above
1000 meters. The reason for this limitation is that 1000 meters is an asymptotic value
insofar as diffusion over the x coordinate range of 1000 meters is concerned. In other
words, values of mixing depth above 1000 meters give no significant variation from a
mixing layer depth of 1000 meters.

This point is further illustrated in Figure 15. The wind speed necessary to achieve

a x/Q of e? at 1000 meters versus mixing layer depth is illustrated in this case, with
stability class as a parameter. From this graph it is apparent that lower mixing ceilings
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Figure 15. Wind spced necessary to achieve x/Q = ¢ at 1000
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most strongly affects thc most unstable atmospheric conditions. This may be intuitively
understood as follows. The basic equations tor descyibing the mixing lid reflections is
the method of infiniie imaging, equation (16) and the modifications that follow from it.
Under extremely unstable conditions (say, 1 or A conditions) then a cell of pollutant
would tend to rise very rapidly, and thus be “retlected™ at an earlier point than would

a cell of pollution under more stable conditions. Thus, Figure 15 corresponds to physical

intuition.
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CONCLUSIONS

It has been shown that the standard diffusion equation may be separated to
yield solutions which interface with known geometric and meteorological constraints.
Specific weather conditions were assumed to illustrate the application of the theory.

It was seen that under the assuinption of constant traffic density on a linear
road, the worst weather conditions involve a rather stable atmosphere and low wind
speed. The depth of the mixing layer seems relatively unimportant of the first kilometer
from the line source, unless very low mixing depths are encountered.

Under the very special conditions of small mixing depths, the most stable

atmosphere may, at adequate distance, actually produce a lower concentration of pollu-
tants than an unstable atmosphere.
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APPENDIX A

BASIC COMPUTER PROGRAM
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SUBROUTINE LGINT(LAGRANGIAN INTERPOLATION) JRA 12/12/72

et ddddaquddddqdadedddddaaddadeddddddddddddddqaadddddadddaqde

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

SUBROUTINE LGINT PERFORMS LAGRANGIAN INTERPOLATION USING A
SPECIFIED NUMBER OF 'THE DATA POINTS IN THE GIVEN TABLE.

SUBROUTINE'S ARGUMENTS AREees
XTABL=~ARRAY OF INDEPENDENT VALUES OF DATA TABLE.

YTABL=~ARRAY OF DEPENDENT VALUES OF DATA TABLEs VALUES
ARE IN DIRECT CORRESPONDENCE WITH XTABL VALUES.

NTABL=~LENGTH OF XTABL AND YTABL ARRAYS.

X ~~INDEPENDENT VALUE FOR WHICH A CORRESPONDING
DEPENDENT VALUE IS TO BE INTERPOLATEDs

Y ==THE INTERPOLATED DEPENDENT VALUE.

NPTS- ==NUMBER OF POINTS FROM THE TABLE TO BE USED 'IN THE
INTERPOLATION

IERR ==~ERROR INDICATOR IERR=1 INTERPOLATION PERFORMED

CORRECTLY
IERR=2 INTERPOLATION INHIBITED

BECAUSE X OUTSIDE TABLE»
NPTS LESS THAN ls OR NPTS
GREATER THAN NTABL.

SUBROUTINE'S IMPORTANT VARIABLESees
NONE

LIMITATIONSee s
VALUES OF XTABL ARRAY MUST BE STRICTLY INCREASINGe

X GREATER THAN OR EQUAL TO XTABL(1) AND LESS THAN OR EQUAL

TO XTABL(NTABL)

NPTS GREATER THAN OR EQUAL TO 1 AND LESS THAN OR EQUAL
TO NTABL. -

NOTESeee

LGINT 1S LIMITED TO INTERPOLATIONs IT WILL NOT EXTRAPOLATE.

ONE POINT INTERPOLATION RETURNS THE YTABL VALUE WITH
THE CORRESPONDING XTABL VALUE THAT 1S CLOSEST TO Xe

TWO POINT INTERPOLATION IS EQUIVALENT TO LINEAR
INTERFOLATION USING THE TWO POINTS.

THE TABLE VALUES USED IN THE INTERPOLATION ARE CENTERED

AROUND THE POINT OF INTERPOLATION WHEN POSSIBLEs HOWEVERS

WHEN THE INTERPOLATION POINT IS CLOSE TO EITHER END OF
THE TABLEs THE TABLE VALUES -USED ARE THAT END OF
THE TABLE, i

cC
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C PROGRAMMER==JAMES Re ALEXANDER
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE LGINT(XTABLsYTARLsNTABL sXsYsNPTSsIERR)
DIMENSION XTABL(1)aYTABL(1)
1ERR=1

ERROR CHECKS

IF(NPTS)204+20s10
10 IF(NPTS=NTABL130930+20
20 1ERR=2

RETURN

INTERPOLATION INHIBITED~=VALUE OF NPTS OUT OF PERMISSIBLE RANGE
LOCATING PORTION OF TABLE TO BE USED IN INTERPOLATION

310 I=1
[2=2% (NTABL=-1)
NC=NTABL
Il=1
40 IF(X=XTABL(1))60+50+70
50 Y=YTABL(I)
RETURN
60 12=1
NCml
GO TO 80
70 1=
80 I=(12=-11+41)/2+]1
12=NC
IF(12=11=1)90+100940
90 IERR=2
RETURN

INTERPOLATION INMIBITED=-~VALUE OF X OUTSIDE RANGE OF XTABL VALUES

100 NC=12
IF(XTABL(T2)+XTABL(I1)~2.0%#X)120+120+110
110 NC=11
120 11=11=NPTS/2+1~(NPTS=NPTS/2%#2)#(11/NC)
[2s[1+NPTS-1
IF({11)130+1309140
130 [1l=1
12=NPTS
GO TO 160
140 IF(12=NTABL)160+1609150
150 I1=NTABL=NPTS+1
12=NTABL

PERFORM INTERPOLATION

160 Y=0.0
DO 190 I=11s12
YY=le0
DO 180 J=11s}2
IF(1=J)170,180,4170
170 YYsYY®R(X=XTABL(J))/(XTABL(It=XTABL(J))
180 CONTINUVE
190 Y=Y+YY#YTABL(I)
RETURN
END
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FUNCTION SIGY(XsVIS)

FUNCTION SIGY DETERMINES THE HORIZONTAL DISPERSION COEFFICIENT
TABLE OF VALUES TAKEN FROMsy WORKBOOK OF ATMOSPHERIC DISPERSION

X
vl

ESTIMATESs De BRUCE TURNER» PUBLIC
HEALTH SERVICEs 1970=~AVAILABLE AS
PB=191482 OR N71=31626.
SEE FIGURE 3=2,
==DISTANCE DOWNWIND ’
S ~==STABILITY CLASS 1=Avessnt®Fe A NON INTEGER VALUE RESULTS
IN LINEAR INTERPOLATION IN THE LOGX~LOGSIGY SPACE BETWEEN
THE TWO NEAREST CLASSES

DIMENSION FY(16+6)

DIMENSION Fll16)4F2(16)9F3(16)sFallb)eFS(16)eF6(16)
EQUIVALENCE (FY(L)oFLlUL)) o (FY(LT)eF2(1))o(FY(33)9F3(1))
EQUIVALENCE (FY(49)9F4{d))olFY(65)eF5(1))e(FY(BLl)eF6IL1})

DATA Fl/27e¢504165062¢0095009140600215000325000470002715600
110406091550e0923006093350409490060572504041100040/

DATA F2/1965929¢0+4445968409100601158¢0923860936000¢550009800409
1119040+18000¢09260060938506095580009820040/

DATA F3/12e5419e2934¢09456536840510560016200+24260937040
1550409840.091280409188040928004094150600610000/

DATA F4/841912¢3519001284594400068400108¢0916060926700+370409
15600098406091220¢091820609270040+4100607/ ]

DATA F5/60199¢2914¢292108933409514097840011840+180600275400
141040963040983040913204002050409305040/

DATA FE6/4¢1966209439144822240036009536007900912260918040»

»127500042000|6200009“0-0’13800002050.0/

10

20
30

40
50
60
70

A(X)=0e43429#ALOGIX)

N=1

IF(X=1e0)10920+20

SI1GY=040

RETURN

IF(X=10000040)30430,10

11aVIS+0.1

12=11+1=11/6

IF(11)10910940

IF(11=6)50+50910.

IF(X=160s0)709704+60

N=1e0001+{A{X)=2:0)%540
YllA(FY(Noll))*A(FY(NOIZ)/FY‘N.II))'(Vls-FLOAT(ll,,
Y2=A(FY{N+1oI1))+A(FY(N+1312)/FY(N+1o11))%(VIS=FLOAT(I1))
SIGY=10, 0**(Y1+(Y2-Y1)/002‘(A(X)~200-(N-1)*0.2))
RETURN

END
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FUNCTION SIGZ(XsVIS)

FUNCTION SIGZ DETERMINES THE VERTICAL DISPERSION COEFFICIENT
TABLE OF VALUES TAKEN FROMs WORKBOOK OF ATMOSPHERIC DISPERSION

X
vl

10

20
30

40
50
60
70

ESTIMATESs De BRUCE TURNERs PUBLIC
HEALTH SERVICEs 1970=-=~AVAILABLE AS
PB=191482 OR N71=31626.
SEE FIGURE 3«3,
~--DISTANCE DOWNWIND
§ ==STABILITY CLASS 1=Aseses6=Fe A NON INTEGER VALUE RESULTS
IN LINEAR INTERPOLATION IN THE LOGX=LOGSIGZ SPACE BETWEEN
THE TWO NEAREST CLASSES

DIMENSION FZ(16+6)

DIMENSION F1l(16)sF2(16)sF3(16)sF4(16)9F5(16)sF6(16)
EQUIVALENCE (FZ(1)sFL(L1))s(FZLL1T)I9F2(1))»(FZ2(33)9F3(1))
EQUIVALENCE (FZ(49)sF4{1))e(F2(65)9F5(1))e(FZ(BL1)eF6(1])
DATA F1/14¢092%3¢093760972¢0917060946540012206093100609860040
1215006046000060514000060+315000609740000e091650000,09420000060.
DATA F2/11¢001665925e¢5941¢0965¢09111060918540930040450040>
182060913806042250609375060+6200,09102006091700040/

DATA F3/76691165017¢032603939¢5961060995¢0014240922040933040»
15106409780¢091150¢051800609265040939000/

DATA F4 /4079 7e001003915e68902262932¢0943¢8+58¢0977¢0910140»
11380+18060323060+295600365¢0046060/

DATA F5/3e5954a397e¢751100915¢3921¢2929¢093805195000962¢0979¢0>
1100640012060+143¢0916360918340/ : )

DATA F6/2¢393¢49640997e191002914600919¢0024409316093765946059
15640364409 7360+84e099440/

A(X)1x20es43429%ALOGIX)

N=1

IF(X=140110+20+20

SIGZ=0.0

RETURN

IF(X=100000¢0)30930410

[1=vVIS+0.1

12=11+1=11/6

IF(11)10+10940

IF(I1=6)50950910

IF(X=16060170070960

N=2le0001l+(A(X)=240)%5,0
Y1=A(FZ(NosIL))+A(FZINOGI2)/FZ(NsI1))H(VIS=FLOAT(I1))
Y2=2ALFZ(N+1oI1))+A(FZIN+LoI2)/FZIN+19I1))#(V]IS=FLOAT(I1))
SIGZ=10,0%#(Y1+({Y2=Y1)/0e2#(A(X)=2,0=(N=1)%0,2))

RETURN

END
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FUNTTION CHIF3(FXeZsHILIM)

FUNCTION CHIF3 EVALUATES THE 2=X DEPENDENCY OF CHMI
FX «=THE VERTICAL DISPERSION COEFFICIENT AT X

Z =~2 COORDINATE
HIL ==HEIGHT OF INVERSION LAYER
H ==SOURCE HEIGHT

SERIES 1S SUMMED UNTIL NTH TERM CONTRIBUTES LESS THAN 0e01 :PERCENT
TO THE N TERMS OF THE SERISe

C20e5/7(FXHFX)

R=Z+H

SaZ~H

FREXP(=CHR¥*R)+EXP (=CHS%S)

N=1 : .
10 O=FLOAT(2%N)*HIL

FNSEXP(=C#(S=Q) #(S$=Q) )+EXP (=C# (R+Q)#(R+Q) )+EXP(=C#(R=Q)®(R=Q))

1+EXP(=~CH{S+Q)*{S+Q@)}}

F=F+FN

N=N+1 .

IF(FN/F=0+0001)20+10,10
20 CHIF3sF

RETURN

END

FUNCTION CHIF4(HXsYsYO)

FUNCTION CHIF4 EVALUATES THE Y=X DEPENDENCY OF CHMI
HX «=THE HORIZONTAL DISPERSION COEFFICIENT AT X
Y ==Y COORDINATE

YO ==ROAD SEGEMENT HALF LENGTH

REAL ERROR FUNCTION APPROXIMATION
ERF({X) = ERFA(X) + Ey9 X GREATER THAN OR EQUAL TO Z2ERO

ABS(E) LESS THAN OR EQUAL TO 1e5E=C7
REFERENCE. ABRAMOWITZs Me AND STEGUNs [e As HANDBOOK OF
_MATHEMAT ICAL FUNCTIONSs NATIONAL BUREAU OF STANDARDS»
APPLIED MATHEMATICS SERIESe55¢ JUNE 1964 PAGE 299
EQUATION 7ele26e

S(X)121.0/(1+040032759214X)
ERFA(X)=1e0=(S(X)*(0e254829592+S(X)#(=0s284496T736+S(X)®
1 (164214237061 4S(X)#(=1,453152027+5(X)#1,061405429)))))#

2 EXP(=X%X)

CaHX#1,41421356
YlmYQ=Y

Y2mYO+Y .
CHIF4=SIGN(ERFA{ABS(Y1)/C) oY1) +SIGN(ERFA(ABSIY2)/C)eY2)
RETURN ' ‘

END



## PROGRAM CHITR(PREDICTION OF STRAIGHT ROAD AIR POLLUTION} 07/28/73

on NN

NON

DIMENSION TT(50) sPHI(50)
IRD=2
{PR=3
SIGZIM 1S THE VERTICAL DISPERSION ASSUMED TO HAVE OCCURED
FROM VEHICLE INDUCED MIXINGe
SIGZM=2,4
READ TRAFFIC TIME DENSITY(TIME IN UNITS USED BELOWs VEHICLES/SECQ)
DENSITY FUNCTION 1S USED CYCLICALLY
READ(IRDs1) Ns(TT(I)sPHI(E)s1I=14sN)
1 FORMATI(15/(2F842))
TTT=TT(N)=TT(1)
READ EMMISSION/METER=VEMs ROAD HALF LENGTH»SOURCE HEIGHTs INVERSION
LAYER HEIGHTs ROAD HALF WIDTHe WIND VELOCITYs AND STABILITY CLASS
(leO=Ase0e95e0=F) ’
READ(IRD#2) QeYOsHsHILIXMeUsVIS
2 FORMAT(10F8.2)
CALCULATE X BIAS FOR INITIAL DISPERSION
Y1=SIGZ(1e09VIS) ’
¥Y2=S1GZ(100.0sVIS)
XB=10e08%({20%ALOGISIGZM/YL) /ALOG(Y2/YL))
SIGYO=SIGY(XM+XBsVIS)
SIGZOsSIGZ(XM+XBsVIS)
Cl=ls0/CHIF3(SIGZ0s0e0sHILIH)
C2=10/CHIF4(S1GY0+0404Y0)
C=Q/H/URSIGZORC1%C2
READ NUMBER OF PREDICTIONS
READ(IRDs7) NPRED
7 FORMAT(1S)
DO 100 IPRED=1sNPRED
READ SPATIAL AND TEMPORAL COORDINATES OF PREDICTION POINT
READ(IRD#2) XoYs2sT
IF(X=XM)T75440440
40 IF(Z2)75+50950
50 IF{2Z=HIL)80+80,75
75 WRITE(IPR»S)
S FORMAT(1H1/10X9e26HINPUT COORDINATES IN ERROR)
GO TO 100
80 SIGYXsSIGY(X+XBsVIS)
SIGZX=SIGZ(X+XBsVIS)
Fl=1,0/81GZX
TPaT=(X=XM) /U
M=ABS(TP/TTT)
IF(TP=TT(1))82,83,83
82 TP=TP+TTT#(M+1)
83 IF(TP=TT(N))B85,85484
84 TPaTP=TTT#M
85 CALL LGINT(TTsPHIsNsTPsF2+2+1ERR)
GO TO(95+90)s1ERR
90 WRITE(IPRsS) TP
6 FORMAT(1H1/10Xs19HINTERPOLATION ERROR/10X9F842)
GO TO 100 '
95 F3=xCHIF3(SIGZXsZaHILWH)
FaexCHIF4UISIGYXsY9YO)
CHI=CH*F1#F2#F34F 4
WRITE(IPRY3) XoYsZsTeCHI
31F?§M2T(1H1/10XQAHCHI(oFBoZolHo0F802-1H00F00201H00F80204H) =
E12.5) |
WR.TE(IPR94) QoYOoHIHILIXMoUIVISeXBsSIGYDsSIGZOsSIGYXsSIGZX
1C1sC2+CoF1oF29F34F4
& FORMAT(//10Xs4HQ = 9E1265/10X95HYO = sEL245/
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110X94HH = 9E12e5/10X96HHIL = E1245/10Xe5HXM ® 9E1265/10X94HV = »
2E12e5/10X06HVIS = +E1265/10Xs54X8 s 9EL12e5/10Xe8HSIGYO » 9E1245/
310X%X98HSIGZO = sE12e5/10XeBHSIGYX = 9E12e5/10X98HSIGIX = ¢E1265/
410Xs5HC] ® pE12e5/710X95HC2 = 9EL12e5/10Xs4HC = ¢E1205/10Xe5HFL = »
5E12+5/10X95HF2 = +E1265/10X95HF3 = sE12e5/10X95HF4 = 3EL12e5)

100 CONTINUE
STOP
.1, END .
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APPENDIX B. EVALUATION OF CONTOUR INTERVAL

As previously mentioned, it is usually necessary to express pollution concentrations
from a road when the wind vector is not orthogonal to the road. The specific integral for
this task is shown on page 20.

In order to save computer time in the implementation of this case, it is often
necessary to approximate the given integral analytically. To this end we proceed as

follows.

If we agree to evaluate the integral for very large 2 and at z=H we have

Cexrtan gy 2
20 2 (x-x*) . -x*-
2o, (x-x*) Zl bp sin Pp ( WX --’—(LT_XQ>

0 Yo tan we =
LY. H ) = == ) — - LB Coe s ~— dx* B-1
x(x,y. H.» 5 %z Xo) 0y (XO)'{o tan ¥ Oy (x-x*) oz (x-x*%) . * (B-1)
We now assume that
- x* -
N(t)~N <t "’iﬁ—ﬁ) ,
u
which will be valid for short segments. Then (B—l) becomes
_yox*tany)?
0 Yo tan ¢ 2 oy2 (x - x*)
. e
yv.H, = = o N (t - e e dX*
X (X, y )= 507 (X0) Oy (Xo) ()J oy (x-x*) 0, (x X%
Yo tan ¢
For convenience we now write,
_ (.- x* tan )’
20,2 (x-x%)
I= e Y T dx* ' (B-2)
Oy (X - x*) 0 (x - x*) ’ ,



Then,

y-x*tan y =y-xtan Y +x tan ¢ - x* tan Yy=(y-xtan y) + (x-x*) tan ¢

Abbreviating,
(x-x¥)=r
y-xtan y =h ,
we have'

(n+r tan )°

o f . 2 oy2 )
oy (r)o, (r)

(B-3)

(B-4)

We now approximate the reciprocal Oy in the exponential as

[ay (r)]'l =(d+er) ,

¢

(B-3)

and operate on the resulting exponent as follows:

(n +rtan w)2 (6+er)2=[6n+r(6 tan ¢ + e n) + (€ tan w)rz]

Substitute

s=r
2etan y

so that

(n +rtan Y)? (8 +er1)? = (e tan Y) §?
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_ (8 tan ¢ +en) (Y # 0)

(B-6)

_(Btany-en)?
"4 etan Y




Then

I=e¢

6 _ 2
O ety f e tan §)
Oy (s + 1) 0 (s % 1)

with

- @tany-en) . . (B-
4¢tan Y o : (B-7)

Expand the o, and o, values that occur in the demoninator as

3

1 .
e = v:*(s+ p)l B-8
oy s+ 1) i;o l 2

i 3 i

= pv. ¥ (s + 1 ’ B-9
o, TR ZO (s +p) (B-9)
so that
1 6 i
— Y vistwl

o, (s+ A —o S w) .
where the Vi’s are defined as obvious combinations of vi* and Vi"‘* . Then

(6 tan Y -€ _1))2_ 6
|=¢ detany 2 v, o-(€ tan V) s? (s+p)i ds
i=0

Finally, setting

Vetany s=w . (B-10)
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so that

(8 tan - e n)?

6 . ' .
I=-e 4 ¢€tan y Z e SN, IO (w + p+/e tan Y)Y deo

i+
=0 i+

(e tan y) 2
(B-11)

The integral may now be evaluated from expressions contained in standard
.references such as Reference 12. From that scurce,

fe"‘2 dx=\—/——1_r-erfx ,
2 1 X2
fxexdx=-§e , and

, B A
fx“ eX> dx = -;— -1 g x? +—n—5— fxn"z eX’ d x

The coefficients which occur in the expansion of the binominal are denoted as

3 ,
Dy = (e tan y) f2 (o + Vit vau? +uspd Hoapt +osp’ +vgps) ,
D, = (e tan ¥)! (0, + 2u,u + 3v3u® + Aau + Svgut + 6vgu®)

(e tan w)‘3/2 Wy + 3vzu + 6vapu? + 100 + 1505u*) ,

D, =
Dy = (e tan )2 (3 + 4vap + 10vsu? + 2005u3) ,
Dy = (e tan ¥) 2 (vg + Swsp + 15peu?)

D; = (e tan Y¥)3 (v5 + 6Vsu) , and

D = (e tan Y)Y 12 vg (B-12)
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or by the convenient binomial coefficient matrix as

_ - _ -
Do (e tan.y) 2 1, o, w?, w3, ut, u®, ] voT
D, (e tan ¥) 0, 1, 2u, 3u?, 43, 5%, 6&° vy
D, (e tan y)F 0, 0, 1, 3u 6u?,10u%, 15u* vs
D3 (E tan ‘l’)z = 0, 0, 0, 1, 4”, loﬂz s 20“13 V3
D, (e tan y)/ o, 0 0 0 1, 5 15u2 va
‘Ds (e tan ¢ )° 00 0, 0, 0, O 1, 6u vs
D, (e tan ¢) 2 o0 00 00 00 0, 0 1 ve
Then,
(8 tan y-en)”
[=.¢ 4€tan y {—Vlg (8 Dy + 4D, + 6D, + 15D;) erf w
1 2 | 3 15 \
- 5 € [(Dl + D3 + 3D5) + (D2 + 5 D4 + -Z' D6) w + (D3 +. 2D5 )(4)
5 3 4 -]
+(D4 +§ D6)w +D5w +D6w ] . (B‘l3)

The choice of coordinate system (at the center of the given segment) guarantees
symmetric integral limits of the variable x*. But it should be remembered that a linear
translation of this variable was made, so it cannot be argued, in general, that the even
terms in the last expression vanish. If we reintroduce the initial variables we have

w= (x - x*) - [6 tan ‘g :;(%'ixﬂ] V€ tan Y

Thus,

51



& tan ¥ + e(y - x tan ¢¥)

wlx*:)’u tany {x - yo tan ¥ - [ 5 e'“tan'w' : ]} m:: w
(B-14)

and

6 tan ¥ + e(y - x tan ¢

Wix*=y, tan § = {x +yo tan ¥ - [ T3 e tan ¥ )]} Vetan ¢ = w2

(B-15)
Finally abbreviating,
E, = _sz (8D, + 4D, + 6D, + 15Dg)
1
E1=5(D1+D3+3Ds), »
E —l(D +3D +15D)
2 =5 W ¥ 5 Da ™ 5 He ,
1
E3=72—(D3 +2D5) )
E, = - (D, +2 D)
4 2 4 2 6 >
E ! D and
= , ar
s T 5 Us
1
We have
(6 tan Y - en)?
[=+¢ 4c€tany { g’ [E, + Eqw +E3w? + Eqw?® + Esw* + E,w®]
Wy o
-Fy erf wp | ,
o (B-16)
so that
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X = 5 04 (Xo) 0y (Xo) €

QO

de tan Y { E, (e Wi w2’

'i; E, (w,e"“’l2 -wze""22) + E; (w3 ewr’ -wzze"""22) + E, (c,olz*e"“le
-y’ e_wzz) + E; (w14e_w12 ‘w24e—w22) + Eq (‘-0153_““2 'wzse-w22)

- E, (erf wy. - erf wz)} N(E) (B-17)

It would be very convenient if equation (B-17) could be inverted to yield y as
a function of ¥, since this would allow noninterpolative plotting of constant x isopleths.
Such an inversion is not a simple matter, however.
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